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Abstract. General expressions for traces of products of angular momentum matrices (both 
in Cartesian and spherical bases) for systems of arbitrary spin are derived using the well 
established properties. I t  is shown that the trace I S  a polynomial in q where q is the eigen- 
value of the J 2  operator. The trace techniques developed herein are applied to the problems 
of spin orientation. 

1. Introduction 

Ambler er al (1962a, b) have obtained the traces of products of a limited number of 
angular momentum matrices for systems of arbitrary spin. The purpose of this article 
is to  extend the results of Ambler er a/ and to  obtain the nature and the general form of 
the trace of a product of an arbitrary number of angular momentum matrices. In Q 2 
it is shown that the trace is a polynomial in q where q is the eigenvalue ofthe J2 operator. 
We also prove that the trace can be expanded in terms of Tr(JtP), where p is a positive 
integer. The results are tabulated for a product of matrices up to  eleven in number 
in a more concise form than given by Ambler et a1 (1962a). 

The trace techniques developed here are of great use in the study of spin orientation 
problems. For the purpose of illustration we have obtained the explicit forms for the 
spin tensors and evaluated their reduced matrix elements (6 3.2) and we have also 
investigated the elastic scattering of particles of arbitrary spin by a target nucleus of 
zero spin (Q 3.3). 

In this paper, the following notation is used: 
(i) Angular momenta are expressed in units of h and are denoted by j. 
(ii) The symbols 2, p, v denote x or y or z .  
(iii) The Levi-Civita symbol in three dimensions is denoted by cqy. 

(iv) Positive integers including zero are denoted by U, /3, y, n, p ,  q, r and K .  
(v) The symbols L,  M and N denote x, y and z in any permutaticn (L,  M and N 

(vi) The symbols q and R are defined by q = j (  j + l), R = q(2j + 1). 
(vii) The difference operator (cf Miller 1961) is A and the anti-difference operator 

is A - ' .  
(viii) The Bernoulli polynomial of the first kind (cf Miller 1961) of degree p in s 

is denoted by Bp(s).  
(ix) Polynomials of degree p in 5 with real and rational coefficients are denoted by 

Fp(5),  G,(<), . . . . A polynomial in 5 of degree - 1 is interpreted to have the 1/< term 
only. 

are different). 

1995 
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(x)  The scalar triple product is denoted by 

[PQR] = (P x Q) . R .  

2. Evaluation of the trace 

2.1. Properties of angular momentum matrices and traces 

In this section we give the well known properties of the angular momentum matrices 
and of the traces which are used to develop the techniques. 

(i) If J is an angular momentum operator, then 

J x  J = iJ. (2.1) 

J,J,- J,J, = icj+,,Jv. (2.2) 

Equation (2.1) is a consequence of the more fundamental relation 

We have used the Einstein summation convention of summing over repeated indices 
in equation (2.2). 

(ii) The scalar matrix J2 is given by 

Jz = V I ,  (2.3) 
where Z is a unit matrix of order (2j + 1). 

(iii) The components of J namely, J,, J, and J,, are Hermitian. 
(iv) The matrices J2 and J, can be diagonalized simultaneously in which case J, 

will have a spectrum of eigenvalues (diagonal elements) - j  to j in steps of unity. Of 
the two remaining matrices, one has only real elements and the other has only imaginary 
elements (cf Rose 1957a). 

(v) The trace is invariant under a similarity transformation. 
(vi) The trace of a product of matrices is not changed by a cyclic permutation of the 

matrices. 

2.2. Nature of the trace 

Consider a product of angular momentum matrices 

A = J,J,J,, . . .  . (2.4) 
Let J, occur a times, J M ,  j times and J,, y timest. We can show that Tr A is real when 
a, p and y are all even and purely imaginary when a, p and y are all odd. When a, p and 
y are of mixed type (even and odd mixture), Tr A is identically zero, zero for all j. The 
proof is given below and it is based on the property that in a given representation, two 
ofthe three matrices consist ofreal elements whereas the third consists ofpurely imaginary 
elements. 

Case I : a, j and y are of mixed type. 
Consider two different representations which are connected by a unitary transformation. 
In one representation, let the matrix which occurs an odd number of times have purely 
imaginary elements. Since the other two matrices have real elements, TrB is purely 

t For any matrix 9, 9' = I, the unit matrix 
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imaginary. In the other representation, let the matrix which occurs an even number of 
times have purely imaginary elements. In this representation Tr A is real. Since the 
trace is invariant under a similarity transformation, 

T rA = 0. (2.5) 

Therefore. when a, /I and y are of mixed type, Tr A is identically zero, zero for all j .  

Case I1 : a, fl  and y are all odd (even). 
Consider the representation in which any one of J,, J ,  and J ,  has purely imaginary 
elements. Tr A is purely imaginary (real) as each matrix occurs an odd (even) number 
of times and iodd (i"'"") is purely imaginary (real). 

Therefore, using again the property that the trace is invariant under a similarity 
transformation, Tr A is purely imaginary (real) when a, fl  and y are all odd (even). 

Thus, by mere inspection, one can tell whether the trace is real, zero (zero for all j ) ,  
or purely imaginary. 

2.3. Evaluation of Tr(JiP)  

The evaluation of Tr ( J : P )  is straightforward. In the representation I j m )  in which J ,  
is diagonal, 

Tr(J:,) = 
m =  - j  

Since (cf Miller 1961) 

using the fundamental theorem of the sum calculus and the relation (cf Miller 1961) 

(2.9) 

(2.10) 

Using the principle of mathematical induction we can show that (cf Subramanian 

(2.1 1 )  

where U = s2 -s. The proof involves the use of the following relations (cf Miller 1961): 

1973) 

B2,+l(S) = 4 s -  1)(2s- IF,- l ( 4 ,  

(2.12) 

(2.13) 

(2.14) 
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Hence 

2Q 
2 p +  1 

Tr(J:P) = -G,- l(r]). (2.15) 

Since the trace is invariant under a similarity transformation, the above result is true 
in all representations. 

2.4. Results 

Using equation (2.10) and the properties given in 6 2.1 we have obtained the traces of 
products of matrices up to  eleven in number. Table 1 gives a list of the trace of a product 
of angular momentum matrices in a Cartesian basis. Traces of other products can 
easily be obtained using table 1. 

The following properties of the traces can be easily proved: 

(a )  Tr(JtJLJK) is invariant under an interchange of the powers of JL, J, and J N .  

(b)  Tr(JiJ&JK) = ( -  l ) a + p + 7  Tr(J"J' L N M  JB ). (2.16) 

In some problems the angular momentum matrices occur as scalar products J .  A 
where A is a vector but not an angular momentum operator. Hence it is desirable to 
obtain traces of such scalar products using table 1 and they are presented in table 2. 

2.5. General form of the trace of a product 

In 5 2.2 we have found the nature of the trace of a product of an arbitrary number of 
angular momentum matrices. In this subsection we obtain the general form of the trace 
of a product of angular momentum matrices given in a spherical as well as a Cartesian 
basis. 

2.5.1. Product involving J, , J -  and J,. The raising and lowering operators are given 
by (cf Rose 1957a, chap 2) 

J, = J,fiJ,. (2.17) 

Consider a product of angular momentum matrices involving J+ , J- and J,, 

B = J,J,J,. . . , (2.18) 

where each one of the matrices J,, J,, J,, . . . can be any one of J,, J- and J,. Let J+ 
occur p times, J- , 4  times and J, ,  r times. 

Tr B = (jmlBl j m ) .  
m 

(2.19) 

Since the trace is invariant under a similarity transformation, let us evaluate the trace 
in the representation in which J, is diagonal. Since m is stepped up p times, stepped 
down q times, and unaffected r times, 

m + p  x ( l ) + q  x ( -  l ) + r  x (0) = m. (2.20) 
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Table 1. Traces of products of angular momentum matrices in Cartesian basis 

Number A Tr A 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

21 

28 

29 

Hence p = q, and therefore J ,  and J -  must occur the same number of times for the 
trace to exist. Since (cf Rose 1957a, chap 2) 

J*lj, m + P )  = [jf(m+P)]’/’[jf(m+P)+ l]”*Ij, m + P f  I), 

J J j ,  m + R )  = (m+R)I j ,  m+R), (2.21) 

the quantity (jmlBljm) is a product of p products of the type [ ( j - m - P ) ( j + m + P  
+ I)]”’, q products of the type [ ( j+m+Q)( j -m-Q+ 1)]’12 and r products of the type 
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Table 2. Traces of scalar products involving angular momentum operators 

( m  + R )  where P,  Q and R are integers. Since p = q, and since 

J + I j , m + P )  = [ ( j - m - P ) ( j + m + P + 1 ) ] ” 2 ) j , m + P + 1 ) ,  

J - l j , m + P + l )  = [ ( j + m + P + l ) ( j - m - P ) ] ’ ’ 2 1 j , m + p ) ,  (2.22) 

the contributions from J +  and J -  can be paired to give a typical term [q - m2 -(2P+ 1)m 
- ( P 2 + P ) ]  and contributions to ( jmlBIjm)  by J ,  and J -  through p such products 
are given by 

with d = i K  or 3 K  - 1 )  according to whether K is even or odd. Similarly the contribu- 
tion to (jmlBl j m )  by J ,  matrices is given by 

r 

( m + R , ) ( m + R , ) .  . . ( m + R , )  = 1 apmp, 
p = o  

where R , R ,  , . . . , R ,  and up are integers. Using equation (2.15), we get 
Z P  r 

T r B  = 1 1 1 apF,,(q)m2P-K+p, 
m K = O o = O  

(2.23) 

(2.24) 
where F ( q )  is a polynomial in q with real and rational coefficients. The maximum 
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degree of q in F(q)  comes from Tr(JiP+') when r is even and from Tr(JSP''-') when r 
is odd, as Tr(JfPf ') is zero. We now obtain the following results. 

Case I : r is even. 

T r B  = i2Fs(q), 

with 

S = @ p + r - 2 ) .  

Case 11: r is odd. 

Tr B = OGAq), 

with 

T = 3 2 p + r - 3 ) .  

(2.25) 

(2.26) 

(2.27) 

(2 .28)  

The above results are very general and applicable to a product ofany number of matrices. 
It is a matter of simple algebra to  show that the results of Ambler et a1 (1962b) given for 
the limited case p + q + r d 9 can be brought to the form given by equations (2.25H2.28). 

2.5.2. Spherical basis: product inoolving J:, J;', JY. The angular momentum matrices 
J:, J; JY are given by 

JY = J,. 
1 

J;' = -J 1 
J 2  - '  

J! = --J+, 
J 2  

Consider a product of angular momentum matrices 

(2 .29)  

c = J~JFJ:. . . , (2 .30)  

where P? Q ,  R ,  . . . can be any one of 1 ,  - 1, 0. Let J! occur p times, J;' q times and 
JY, r times. It is easy to  obtain 

Tr C = RG(q)G,,, (2.31) 

where G(q) is a polynomial in q of degree S or Taccording to whether r is even or odd, 
with real and rational coefficients. The quantities S and Tare given by equations (2.26) 
and (2.28) respectively. 

2.5.3. Rectangular basis: product involving J,, J, and J,. Let us now evaluate Tr A 
where A is given by equation (2.4). Since 

J+ + J- J, = ~ 

J +  - J -  
J, = ~ 

2 '  2i 
(2.32) 

Tr A = (2) -"(2 i ) -P  Tr[(J+ + J - ) .  . . (J, - J - ) .  . . J,. . . ] ,  (2.33) 

and hence Tr A is a sum of 2"+8 terms of the type Tr(J+ . . . J- . . . J,. . .). Let us 
evaluate Tr A in the representation in which J, is diagonal. Let J+  occur p times, and 
J - ,  q times in a typical term; J, occurs y times. Since p + q  = E + P ,  and p and q must 
be equal for the trace to exist, we get p = q = +(cc+p), and hence contributions to Tr A 
come only from such products which have p = q = +(a + p). Using equations (2.25)- 
(2.28) we obtain the following results. 
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Case I : a, j and y are all even. 
Since (i)-fl is real, 

Tr A = RF(q), (2.34) 

where F(q)  is a polynomial in q of degree S with real and rational coefficients and 

S = $a+j+y-2) .  (2.35) 

Case II : a, j and y are all odd. 
Since (i)-fl is purely imaginary, 

Tr A = iRG(q), (2.36) 

where G(q) is a polynomial in q of degree Twith real and rational coefficients and 

T = $a+j+y-3) .  (2.37) 

The results reported in table 1 of this paper and table 2 of Ambler et aI (1962a) are in 
conformity with equations (2.34H2.37). Let us illustrate these equations with some 
examples. 

5 

6 

Tr(J3J:J;) = iR( C D R g R ) ~ A , v .  
R = O  

(2.38) 

(2.39) 

To find C, (DR)  we must know Tr(JLJ&Ji) [Tr(J:J:J;)] for six (seven) different values 
ofj. Once C, and D R  are known equations (2.38) and (2.39) can be used for all values ofj. 

2.6. Expansion of trace in terms of Tr(J:P) 

Now we prove that the trace of a product of angular momentum matrices given either 
in a spherical or a Catesian basis can be expanded in terms of Tr(JfP). We have 

(2.40) 

where the constants A ,  are obtained by comparing the corresponding coefficients of q K  
on both sides. Let the matrices B and A be given by equations (2.18) and (2.4). Using 
equations (2.15) and (2.40) we have the following results with n = ct + p+ y.  

Case I :  a, p and y are all even. 

T r B  = AoTr(J?,)+A,qTr(J“,2)+A2q2Tr(J;,-4)+ . . . ,  
( n -  2)/2 

= ARqRTr(J ; -2R) .  
R = O  

(2.41) 

Similarly 
0 -  2)/2 

R = O  
Tr A = 1 BRqR Tr(J”,”). (2.42) 
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Case II : U, p and y are all odd. 

(2.43) 

(2.44) 

In equations (2.41)-(2.44), A , ,  B , ,  C ,  and D, are real and rational numbers. Thus the 
traces of products of angular momentum matrices can be derived? from those of the 
form Tr(J:P). 

3. Applications 

3.1. Anti-commutation relations for angular momentum matrices 

The familiar result that the angular momentum matrices J L ,  J ,  cannot anti-commute 
whenj is neither zero nor half can be obtained using the results given in table 1. Using 
table 1 we have 

(no summation). (3.1) 
!a 
15 

Tr(JLJ,JLJ,) = -(q - 2) 

Hence 

Tr(JZJ~)+Tr(J,J,J,J,) = & [ j ( j +  1)(2j+ 1)(2j- 1)(2j+3)] (no summation). (3.2) 

Since j is necessarily positive, the right-hand side of equation (3.2) is zero only when 
j = 0, i. This then implies that J,, J, cannot anti-commute when j is neither zero nor 
half. If they do so, the left-hand side of equation (3.2) reduces to zero irrespective of 
the values of j .  

3.2. Nuclear spin orientation 

The density matrix pr for the final nuclear state completely describes its spin orientation 
(cf Lakin 1955, Devanathan et al 1972, Ramachandran 1967) which can be represented 
conveniently by a set of parameters (T:") defined by 

where T:" denotes a spherical tensor operator of rank K in the spin space of the final 
nucleus and satisfies the normalization condition 

Tr(T$ T:K') = (2j + l ) B K , K ' B m K , m K , ,  (3.4) 
subject to the restriction 0 < K < 2j, where j is the spin of the final state. 

Using trace techniques, we show below that the following relations$ 

(i) (jllTKllj) = ( 2 K +  1)1'2, (3.5) 

t A statement made without proof by Ambler et ql(1962a, b). 

Rose (1  957a). 
For angular momentum coefficients and reduced matrix elements, we follow the notation and definition of 
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can be obtainedt. 
From the Wigner-Eckart theorem 

(j'm'1T;"I j m )  = C( jKj'; mmKm')( j'll TKli j ) ,  (3.7) 

and m' = m+m,. From the fact that the commutator [J ' ,  T:,] = 0, we see that j = j'. 
Hence 

(3.8) 

Tr( T;; T;K') 

= 

TEF'I jm) = C( jK'j; mmK,)( jil T'.II j)lj, m+m,,), 

C( jK ' j ;~~ ,O<j l ITK4l  j)(- l)""C(jKj; m+m,,, -mK,m)<j l17Aj ) .  .,. 
(3.9) 

Using the symmetry and orthogonal properties ofthe C coefficients (Rose 1957a, chap 3), 
we get 

( ( A  TJj>)2S,,rS,,,m,t. (3.10) Tr( TEd TFK') = ~ 

From equations (3.4) and (3.10) we get equation ( 3 3 ,  assuming the reduced matrix 
element to be real and positive. 

To obtain T i ,  we proceed as follows. Let us construct the spin tensors using angular 
momentum operator J. Thus 

( 2 j +  1) 
(2K + 1) 

where G, is a constant depending upon K .  Now 

< jjl TEl j ,  j - K )  = < jll TKll j > C ( j K j  ; j - K ,  K )  
1)!(2K+ l)!K! 

K !  ( 2 j + l + K ) !  

(3.1 1) 

(3.12) 

using the Wigner-Eckart theorem, equation (3.5) and the expression given by Racah 
(1942) for the C coefficient. 

Using equations (3.11) and (2.21) we also have 

( 1 ),( ~ ! ( 2 j ) ! ) ' "  
( j j lTElj , j -K) = G, -- ~ . 

4 2  (2j-K)! 

From equations (3.12) and (3.13) we have 

Equation (3.6) follows easily from equations (3.1 1) and (3.14). 
Incidentally, using equations (3.1 l), (3.4) and (3.14) we have 

(2j+ l+K)!(K!)'  
( 2K+ 1)!(2j-K)!' 

Tr(J5J;) = 

(3.13) 

(3.14) 

(3.15) 

t Rose (1957b) and Goldfarb (1958) have obtained similar results using a different approach. 
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Equation (3.15) is true for any K and it agrees with the results of Ambler et a1 (1962b) 
given for limited values of K = 1,2,3 and 4. 

The matrix element for T:" can easily be found using equation (3.5) and the Wigner- 
Eckart theorem. 

(3.16) 

We have obtained TE using trace techniques. The same techniques can be used to 
find any TFK. For the sake of illustration we have obtained T i  in the appendix. 

3.3. Elastic scattering of particles of arbitrary spin 

Let us consider the elastic scattering of particles of arbitrary spin j by a target nucleus of 
zero spin. The operator that is responsible for this can be of the general form 

t = (J. A)2 '+ ( J ,  B)2j-1 +(J.C)2j-2+ . . . , (3.17) 

since a tensor of maximum rank 2j is necessary to  connect one projection o f j  to another 
projection of j .  

The density matrix pf for the scattered beam completely describes its spin orientation 
which can be represented conveniently by a set of parameters ( T g K )  defined by equation 
(3.3). TZK denotes a spherical tensor operator of rank K in the spin space ofthe scattered 
beam satisfying the normalization condition equation (3.4). The differential cross 
section is given by Tr pf where 

pf = t t + .  (3.18) 

Using table 2 we get the following relations for the special case 

t = J. C +  D. (3.19) 

= (IL) l j 2  (2j + 1) [i(C x C*) + 2CD* + 2DC*] 

(4q-3)q 112 
(iii) Tr( T;pf) = ( (2j + 1)(3C,CT - C .  C*), 

x [(C,C,* + C,C,*) k i(C,,C,* + C,C,*)] 

x [(C,C: - C,C,*) k i(C,C,* + C,C,*)] 

(vi) Tr(T",pf) = 0, for K 2 3. 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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In the above C*, D* denote complex conjugates of C and D respectively. Equation 
(3.25) is not surprising since the special choice of the operator given by equation (3.19) 
restricts the density matrix 

pr = t r +  = ( J .  C + D ) [ ( J .  C + D ) + ] ,  (3.26) 

to contain only tensors of rank two and less. The normalization condition equation 
(3.4) clearly tells that the trace vanishes when K # K'.  
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Appendix. Construction of T;K 

In the text we have obtained Tg. The trace techniques can be used to find any T;K. 
For the sake of illustration let us obtain T:. We have 

(J1 XJ, ) ;  = C(112;01)J~J~+C(112;  1o)J:J: 

= -3J,J+ + J + J , ) ,  

using the value of the C coefficients. Hence 

where k is a positive constant. Using the normalization condition 

Tr(Ti 'Ti)  = 2j+ 1, ('4.3) 

and evaluating the trace using table 1, k is found as 

j ( j +  1)(2j- 1)(2j+3) 
k = (  

so that 

('4.4) 

('4.5) 

When j = 1: 

Equation ('4.6) is essentially the same as equation( 1.3) of Lakin(1955). Only the notations 
used are different. 
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